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Lagrangians
1

Consider a constrained optimization problem:

max
x,y

f(x, y) s.t. c = g(x, y)

We can write this as an analogous unconstrained problem:

max
x,y,λ

L = f(x, y) + λ[c− g(x, y)]

L(x, y, λ) is the Lagrangian and λ is the Lagrangian multiplier. Now
we can use our unconstrained maximization methods to solve!

In this case, with two choice variables and one constraint, our first-order
conditions are:

∂L(·)
∂x

=
∂f(·)
∂x
− λ∂g(·)

∂x
= 0

∂L(·)
∂y

=
∂f(·)
∂y
− λ∂g(·)

∂y
= 0

∂L(·)
∂λ

= c− g(x, y) = 0

And Lagrange’s Theorem tells that any points (x∗, y∗, λ∗) that satisfy these
FOCs are critical points of f(x, y) along the constraint c = g(x, y).

1Prepared by Sarah Robinson
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More generally...

Let f : D → R, where D ⊆ Rn. If m < n, consider the optimization problem

opt
x

f(x) subject to c1 = g1(x)

c2 = g2(x)
...

cm = gm(x)

where gj(x) is real valued for all j.

The associated Lagrangian is defined as

L(x,λ) = f(x) +
m∑
j=1

λj
[
cj − gj(x)

]

If the following conditions hold:

• f(x) and gj(x), j = 1, . . . ,m are continuously differentiable over
D ⊆ Rn

• x∗ is an interior optimum (maxima or minima) of f(x) subject to the
m constraints

• ∇gi(x), i = 1, . . . ,m are linearly independent

Then there exist m unique numbers λ∗j , j = 1 . . . ,m such that:

∂L(x∗,λ∗)

∂xi
=
∂f(x∗)

∂xi
−

m∑
j=1

λ∗j
∂gj(x

∗)

∂xi
= 0, i = 1, . . . , n
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The Lagrange Theorem is extremely useful and will be used like this a lot
during the first year. However, it has some limitations to keep in mind:

1. Notice the core structure of the theorem: If x∗ is an interior optimum,
then the Lagrangian FOCs will find it. We need to confirm whether
each candidate found by the FOCs is a minimum, maximum, or
neither.

2. The objective function and constraint need to be differentiable
(can’t use for u(x, y) = min{x, y}).

3. It only finds interior optima (doesn’t find corner solutions).

4. It only deals with equality constraints.

In essence, the Lagrangian FOCs are finding points of tangency between the
objective function’s level set and the constraint. It’s up to us to confirm
whether that tangency is a minimum or a maximum. And corner solutions
won’t have tangency, so can’t be found using this method.

(We can consider inequality constraints and/or corner solutions with the
Kuhn-Tucker conditions, which we’ll discuss tomorrow).
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Example: Consider the maximization problem

max
x1,x2

(−ax21 − bx22) s.t. 1 = x1 + x2

We can employ the Lagrangian method to find potential extrema. The
Lagrangian is given by:

L(x1, x2, λ) = −ax21 − bx22 + λ(1− x1 − x2)

What are the FOCs?

∂L(·)
∂x1

=

∂L(·)
∂x2

=

∂L(·)
∂λ

=

Solving this three-equation, three-unknown system:
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Our maximization problem:

max
x1,x2

(−ax21 − bx22) s.t. 1 = x1 + x2

We have one candidate point:

x∗1 =
b

a+ b
x∗2 =

a

a+ b
λ∗ = −

2ab

a+ b

Notice that the objective function is concave in both x1 and x2 (think upside
down parabolas). We could use this to show that (x∗1, x

∗
2) is a maximum.

What does λ∗ tell us? It’s the slope of the objective function at (x∗, y∗).
This is also called the shadow value.

If we relaxed the constraint by one marginal unit (e.g., 2 = x1 + x2), it tells
us how the objective function at the solution (the value function) changes.

If a = b = 1, then λ = −1. If we increased the constraint by one marginal
unit, and re-optimized, then

−a(x∗1)
2 − b(x∗2)2

would decrease by one unit. (Remember that this is at the margin, so is a
good approximation for small changes in the constraint. Also note that this
interpretation holds because I put the constraint in as λ[1− x1 − x2].)

Illustration
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Example: Solve this maximization problem using the Lagrangian.

max
x,y

u(x, y) = xy s.t. pxx+ pyy = m
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We have found our solution from yesterday, plus the shadow value:

x∗ =
m

2px
y∗ =

m

2py
λ∗ =

m

2pxpy

Consider the solution for px = 1, py = 2, m = 100:

x∗ =
100

2 ∗ 1
= 50 y∗ =

100

2 ∗ 2
= 25 λ∗ =

100

2 ∗ 2 ∗ 1
= 25

Our value function in this setting is:

V (px, py,m) = u
(
x∗(px, py,m), y∗(px, py,m)

)
V (1, 2, 100) = x∗ y∗ = 50 ∗ 25 = 1250

If we increased to m′ = 101, then our solution would be:

x∗ =
101

2 ∗ 1
= 50.5 y∗ =

101

2 ∗ 2
= 25.25

V (1, 2, 101) = 50.5 ∗ 25.25 = 1275.125

Said differently,

λ∗ =
∂V (·)
∂m

The multiplier gives the marginal value of one more unit of money (relaxing
the constraint by one marginal unit).
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Example: What if we use the Lagrangian for this problem?

max
x,y

u(x, y) = x2 + y2 s.t. 4x+ 2y = 12
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Envelope Theorem

Consider a maximization problem with K constraints::

max
x

f(x,θ) s.t. ck = gk(x,θ) ∀k = 1, . . . , K

Let f(·) and gk(·) ∀k be continuously differentiable with unique solution
x∗(·). Then:

∂V (θ)

∂θi
=
∂L
∂θi

∣∣∣∣
optimum

How the value function changes with respect to a parameter is equal to how
the Lagrangian at the optimum changes with respect to that parameter.

We saw a simple case of this already when discussion the interpretation of
the shadow value λ:

max
x,y

u(x, y) s.t. m = pxx+ pyy

L = u(x, y) + λ[m− pxx− pyy]

∂L
∂m

∣∣∣∣
optimum

= λ∗ =
∂V (px, py,m)

∂m
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Kuhn-Tucker Conditions

We can use Kuhn-Tucker to solve optimization problems with inequality
constraints and to find corner solutions. Let’s start with the theorem.

Consider a constrained maximization problem with K inequality
constraints:

max
x∈D

f(x) s.t. c1 ≥ g1(x) . . . cK ≥ gK(x)

If the following conditions hold:

• f(x) and gk(x), k = 1, . . . , K are continuously differentiable over
D ⊆ Rn

• x∗ is a solution to the maximization problem

• ∇gi(x) are linearly independent for all constraints i that bind

Then there exist non-negative numbers λ1, . . . , λK such that:

∇f(x∗) =
K∑
k=1

λk∇gk(x∗)

λk[ck − gk(x∗)] = 0
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∇f(x∗) =
K∑
k=1

λk∇gk(x∗) where λk ≥ 0

These are our FOCs. The intuition is that, at the optimum, the gradient of
the objective function is a linear combination of the gradient of the
constraints.

Consider a case with two constraint sets, c1 ≥ g1(x1, x2) and c2 ≥ g2(x2, x2),
where WLOG, g1 is the steeper of the constraints:

If one of the constraints does not bind, then that λ is equal to 0.

λk[ck − gk(x∗)] = 0

These are complementary slackness conditions. The intuition is that either
the constraint binds (so the right part is equal to 0). Or it does not bind, in
which case the multiplier is 0 (we might as well have done the Lagrangian
without it).
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How to Use Kuhn-Tucker

max
x∈D

f(x) s.t. c1 ≥ g1(x) . . . cK ≥ gK(x)

Step 1: Set up the Lagrangian, with one multiplier for each constraint.
Make sure that the constraints are set up such that violating the constraint
incurs a “penalty” (breaking the constraint decreases L)

L = f(x) + λ1[c1 − g1(x)] + · · ·+ λK [cK − gK(x)]

Step 2: Write out all of your conditions that a solution candidate must
meet. They are:

(i) The FOC for each choice variable:

∂L
∂x1

= 0 . . .
∂L
∂xn

= 0

(ii) The constraints: ck ≥ gk(x) ∀k

(iii) The complementary slackness conditions for each constraint:

λk[ck − gk(x)] = 0 ∀k

(iv) Non-negative multipliers: λk ≥ 0 ∀k

Step 3: Find all of the solution candidates x that meet all of the
conditions, by investigating every potential combination of binding
constraints (e.g., from no constraints bind to all constraints bind). Make
sure to solve for all of the multipliers to confirm they are non-negative.

Step 4: If you have multiple solution candidates, plug them into f(·) to see
which one (or ones) return the highest value.
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Example: Use Kuhn-Tucker to solve, where px, py,m > 0:

max
x,y

xy s.t. m ≥ pxx+ pyy x ≥ 0 y ≥ 0

Lagrangian:

(i) FOCs:

(ii) Constraints:

(iii) Complementary slackness conditions:

(iv) Non-negative multipliers:

1. No constraints bind

2. The budget constraint binds

3. x ≥ 0 binds

4. y ≥ 0 binds

5. Budget constraint and x ≥ 0 bind

6. Budget constraint and y ≥ 0 bind

7. x ≥ 0 and y ≥ 0 bind

8. All constraints bind
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Example: Use Kuhn-Tucker to solve, where px, py,m > 0:

max
x,y

x+ y s.t. m ≥ pxx+ pyy x ≥ 0 y ≥ 0
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Non-Negativity Constraints

Consider max
x∈Rn

u(x) s.t. w ≥ p1x2 + · · ·+ pnxn xi ≥ 0 ∀i

L = u(x) + λ[w − p1x1 − · · · − pnxn]) + µ1[x1 − 0] + · · ·+ µn[xn − 0]

Our FOCs are
∂u

∂xi
= λpi − µi ∀i

Our complementary slackness conditions are µixi = 0 ∀i

Because we know that µi ≥ 0 ∀i, we can rewrite the FOCs as:

∂u

∂xi
≤ λpi with equality if xi > 0

You will often see this formulation of a FOC with an inequality, that says
“with equality if xi > 0”. This is exactly the conditions we get out of
Kuhn-Tucker, just condensed to make it easier to write.
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Kuhn-Tucker Special Case

Let us be in a situation where we can use Kuhn-Tucker (differentiable
functions, linearly independent constraints that bind, etc.).

If also:

• f(·) is quasiconcave

• gk(·) ∀k are quasiconvex (or, the constraint set D is convex)

Then any point x∗ that satisfies the Kuhn-Tucker conditions is a solution to
the constrained optimization problem.

This is an extremely convenient theorem, because it means that if we have a
quasiconcave objective function and a convex choice set, then any point
that meets the Kuhn-Tucker conditions (FOCs, constraints, complementary
slackness, non-negative multipliers) is in fact a solution.
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Properties of Optimization Solutions

Consider the maximization problem:

max
x∈D(θ)

f(x,θ)

θ ∈ Θ

For example:
max

(x,y)∈B(px,py,m)
u(x, y)

B(px, py,m) = {(x, y) | pxx+ pyy ≤ m ∧ x ≥ 0 ∧ y ≥ 0}
px, py,m > 0

Under what conditions does the maximization problem have a solution for
every value of θ?

Under what conditions is the solution unique?

Under what conditions are the solution set x∗(θ) and value function V (θ)
continous?
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Recall that a correspondence is continuous iff it is upper hemi-continuous
and lower hemi-continuous.

LHC but not UHC UHC but not LHC

Continuous

If φ : X ⇒ Y is a single-valued correspondence, and h : X → Y is the
function such that φ(x) = {h(x)}, then:

φ is continuous⇔ φ is UHC⇔ φ is LHC⇔ h is continuous
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Theorem of the Maximum

Consider the maximization problem:

max
x∈D(θ)

f(x,θ)

defined over the set of parameters Θ.

Let:

• D : Θ⇒ X be continuous (i.e., LHC and UHC) and compact-valued
(i.e., D(θ) is always compact)

• f : X×Θ→ R be a continuous function

Then:

• x∗(θ) is non-empty for every θ

• x∗(θ) is upper hemi-continuous (and thus continuous if single-valued)

• V (θ) is continuous
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Example: What can happen if D is not compact-valued?

Θ = [0, 10] D(θ) = (0, 1) f(x, θ) = x

Example: What can happen if D is LHC, but not UHC?

Θ = [0, 10] D(θ) =

{
{0} if θ ≤ 5

[−1, 1] otherwise
f(x, θ) = x

Example: What can happen if D is UHC, but not LHC?

Θ = [0, 10] D(θ) =

{
{0} if θ < 5

[−1, 1] otherwise
f(x, θ) = x
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Example: What can happen if f is not continuous?

Θ = [0, 10] D(θ) = [θ, θ + 1] f(x, θ) =

{
0 if x < 5

1 otherwise
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Example: Why is it that x∗(θ) is not necessarily LHC?

max
(x,y)∈B(px,py,m)

x+ y

B(px, py,m) = {(x, y) | pxx+ pyy ≤ m ∧ x ≥ 0 ∧ y ≥ 0}
px, py,m > 0

Let px = 1 and m = 10. Our solution set is:

(x∗, y∗) =


{(0, 10py )} if py < 1

{(x, y) | x+ pyy = m} if py = 1

{(10, 0)} if py > 1
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Theorem of the Maximum Extension

Consider the maximization problem:

max
x∈D(θ)

f(x,θ)

defined over the set of parameters Θ.

Let:

• D : Θ⇒ X be continuous (i.e., LHC and UHC) and compact-valued
(i.e., D(θ) is always compact)

• f : X×Θ→ R be a continuous function

Then:

• If f(·,θ) is a quasiconcave function in x for each θ, and D is
convex-valued, then x∗(θ) is convex-valued

• If f(·,θ) is a strictly quasiconcave function in x for each θ, and D is
convex-valued, then x∗(θ) is single-valued

• If f is a concave function in (x,θ) and D is convex-valued, then V is a
concave function and x∗(θ) is convex-valued

• If f is a strictly concave function in (x,θ) and D is convex-valued,
then V is a strictly concave function and x∗(θ) is single-valued
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max
(x1,x2)∈B(px,py,m)

u(x1, x2)

B(p1, p2,m) = {(x1, x2) | p1x1 + p2x2 ≤ m ∧ x1 ≥ 0 ∧ x2 ≥ 0}
p1, p2,m > 0

1. We observe what choices people make from different menus

2. We can (under certain conditions) represent these choices with the
preference relation %

3. We can (under certain conditions) represent this preference relation
with a continuous utility function u(x, y)

4. We can show that B(p1, p2,m) is LHC and UHC

5. We can show that B(p1, p2,m) is always closed and bounded

From the Theorem of the Maximum . . .

6. We know that the solution set x∗(p1, p2,m) is always non-empty

7. We know that x∗(p1, p2,m) is UHC (continuous if single-valued)

8. We can show that B(p1, p2,m) is convex-valued

9. We can show that utility functions with likely-seeming properties
(more is better, and averages are preferred to extremes) are
quasiconcave

From our other theorem . . .

10. We know that x∗(p1, p2,m) is convex-valued

11. If u(·) is strictly quasiconcave, then we know that x∗(p1, p2,m) is
single-valued

12. We know that x∗(p1, p2,m) satisfies our Kuhn-Tucker conditions (and
there are no points that satisfy KT that aren’t in the solution set)
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13. We can use KT to derive MRS = p1
p2

and just use that forever

∂u(x∗)

∂xi
≤ λpi with equality if x∗i > 0

∂u(x∗)

∂xj
≤ λpj with equality if x∗j > 0

MRSi,j =
∂u(x∗)/∂xi

∂u(x∗)/∂xj
=
pi

pj
∀i, j

if x∗i > 0 ∀i
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